Calculating the cumulative sum of a group using Apache Spark

A cumulative sum (or a running total) is a sequence of partial sums of a given sorted dataset. In this article, I will explain how to use Apache Spark to calculate the cumulative sum of values grouped by a column.

Imagine that I have loaded a data Spark dataset, which contains credit card transactions. The dataset consists of two columns: date (a date column) and amount (float type). I want to group the payments by year and month and calculate the total amount spent during that month.

To create a single grouping column, I concatenate the year to the month:

val withMonth = data.withColumn("yearWithMonth", concat(year($"date"), month($"date")))

Now, it is time to define the window used to calculate the cumulative sum. I use the newly created column as my partitioning key:

val window = Window
  .partitionBy($"yearWithMonth")

As the second parameter, I specify the order, because I want the payments to be sorted:

val window = Window
  .partitionBy($"yearWithMonth")
  .orderBy($"date".asc)

Finally, I use the rowsBetween function to specify the window range (note that you should NOT use the rangeBetween function, because it works on the actual values of the rows, not their position. In this case we want to group by position within the partition).

It crates a window that contains values between the first row of the dataset (sorted) and the currently processed row:

val window = Window
  .partitionBy($"yearWithMonth")
  .orderBy($"date".asc)
  .rowsBetween(Window.unboundedPreceding, Window.currentRow)

Now, I can use the sum function with the window to get the cumulative sum:

withMonth.withColumn("spentPerMonth", sum($"spent").over(window))

A quick warning. It turned out that I did not want to know the total value of my credit card transactions since the day I opened the bank account. Make sure that you want to see it before you use your credit card data ;)

Older post

How to write to a Parquet file in Scala without using Apache Spark

How to use Parquet4s to write Parquet files in Scala

Newer post

Understanding layer size in Convolutional Neural Networks

Filter size, padding, and stride explained

Are you looking for an experienced AI consultant? Do you need assistance with your RAG or Agentic Workflow?
Book a Quick Consultation, send me a message on LinkedIn. Book a Quick Consultation or send me a message on LinkedIn

>