Fill missing values in Pandas

The “fillna” function in Pandas not only can replace missing values with a given constant value, like in this example:

import pandas as pd
import numpy as np
df = pd.DataFrame([[np.nan], [2], [np.nan], [0]])
df
A dataframe with missing values
A dataframe with missing values
df.fillna(47)
Missing values replaced with a constant
Missing values replaced with a constant

You can also replace a missing value with the next (or previous) value in the data frame!

df.fillna(method = "ffill")
Missing values filled with the previous existing value.
Missing values filled with the previous existing value.

Note that the first value cannot be replaced because nothing is preceding it.

You can also use the value of the next row to fill a missing value.

df.fillna(method = "bfill")
Missing values filled with the next existing value.
Missing values filled with the next existing value.
Older post

Forward feature selection in Scikit-Learn

Two workarounds to get an equivalent of forward feature selection in Scikit-Learn

Newer post

Import Jupyter Notebook from GitHub

The easiest way to access someone else’s code in your own notebook

Are you looking for an experienced AI consultant? Do you need assistance with your RAG or Agentic Workflow?
Schedule a call, send me a message on LinkedIn. Schedule a call or send me a message on LinkedIn

>